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This paper proposes an analytical formulation relying on the least square error. Similar 

results were also found for the cross correlation, within-class, and between-class variance. 

At first, a continuous distribution is hypothesized (for derivation purposes only) to 

produced a modified form of the well-known OTSU method. This hypothesis is 

“identical” to Otsu in terms of output performance and the need for an exhaustive search. 

However, apart from being derived from the continuous form, the proposed scheme 

requires less computational power. It turns out that the optimum threshold equals the 

average of the adjacent regions’ means. For some images, the scheme can result in multi-

level thresholdeds. A direct form was then suggested to obtain a non-exhaustive solution. 

The idea is simply to approximate the non-continuous error function (used by the least 

square formulation and OTSU) with a forth order polynomial defined in the normalized 

gray intensity range [0,1]. The optimum threshold can then be found as a function of the 

roots of a second order polynomial whose coefficients are the solution of a 2x2 linear 

system. The performance of the proposed non-exhaustive solution is slightly inferior to 

OTSU in general, however; some images produced improved performance. Nevertheless, 

The proposed scheme can be easily generalized to the multi-level case without the need 

for an exhaustive search. For n+1 levels (i.e. n thresholds), the output is obtained by 

solving an nxn linear system followed by finding the roots of a n-order polynomial. The 

computational cost is clearly superior to the exhaustive search. In addition, as validated 

with some images, the performance is encouraging. Extension to the general clustering 

case is highly envolved with the exception of the two-level case (for any dimension) that 

has been successfully derived in this work. 
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I. INTRODUCTION 

Image thresholding is vital in many applications as it allows 

to separate objects in an image, typically based on their intensity. 

Various schemes have been proposed in the literature, a good 

review can be found in [1]. 

The histogram plays a crucial role in many of these 

schemes. Many schemes (e.g. [2], [3]) use the histogram as an 

approximation to a probability density function. An objective 

function is then formalized dependent on some features or 

attributes of the histogram, such as variance and entropy. The 

threshold is then selected as a solution to optimize this objective 

function. 

Due to the fact that a histogram does not carry spatial 

information (2 different images can have the same histogram), 

higher dimensional histograms have been proposed [4-6]. 

The aforementioned schemes can be generalized to multi-

level thresholding [7]. However, the computational price is too 

high. In addition, having many thresholds, the ensemble size for 

each region is reduced. This often results in inferior quality since 

statistics (or probability distribution, i.e., histogram) rely heavily 

on a large ensemble size [8]. 

There are many measures [1, 8-9] to evaluate the 

performance of a thresholding scheme. However, application 

dependant, a subjective decision may be preferred. 
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II. MATERIALS AND METHODS 

II.1 ANALYTICAL FORMULATION 

Consider the minimization of the within-class variance [2] 

 

𝑉𝑤 = 𝑤1𝜎1
2 + 𝑤2𝜎2

2                                 (1) 

 

Where index 1(2) represent a parameter belonging to region 

1(2) respectively, w is weight, m is mean, h is histogram, and σ2 is 

variance.  

Substuting their definitions according to [2] (with integral 

replacing summation), we have 

 

𝑉𝑤 = 𝑤1 ∫ (𝑡 − 𝑚1)2
ℎ(𝑡)

𝑤1

𝑑𝑡
𝑇

0

+ 𝑤2 ∫ (𝑡 − 𝑚2)2
ℎ(𝑡)

𝑤2

𝑑𝑡
1

𝑇

 

 

𝑉𝑤 = ∫ 𝑡2ℎ(𝑡)𝑑𝑡
𝑇

0

− 𝑤1𝑚1
2 + ∫ 𝑡2ℎ(𝑡)𝑑𝑡

1

𝑇

− 𝑤2𝑚2
2 

 

The combined integral in the above equation is independent 

of T, hence, the problem is to maximize 

 

𝐹𝑤 =
{∫ 𝑡ℎ(𝑡)𝑑𝑡

𝑇

0
}

2

∫ ℎ(𝑡)𝑑𝑡
𝑇

0

+
{∫ 𝑡ℎ(𝑡)𝑑𝑡

1

𝑇
}

2

∫ ℎ(𝑡)𝑑𝑡
1

𝑇

                 (2) 

 

Setting the derivative w.r.t T to zero and avoiding zeros in 

the histogram, we obtain 

 

2𝑇 {∫ ℎ(𝑡)𝑑𝑡
𝑇

0
} {∫ 𝑡ℎ(𝑡)𝑑𝑡

𝑇

0
} − {∫ 𝑡ℎ(𝑡)𝑑𝑡

𝑇

0
}

2

{∫ ℎ(𝑡)
𝑇

0
}

2

=
2𝑇 {∫ ℎ(𝑡)

1

𝑇
} {∫ 𝑡ℎ(𝑡)𝑑𝑡

1

𝑇
} − {∫ 𝑡ℎ(𝑡)𝑑𝑡

1

𝑇
}

2

{∫ ℎ(𝑡)
1

𝑇
}

2  

 

The above result can be simplified using the same 

definitions used in (1) to 

 

2𝑇𝑚1 − 𝑚1
2 − 2𝑇𝑚2 + 𝑚2

2 = 0 

 

(𝑚2 − 𝑚1){𝑚2 + 𝑚1 − 2𝑇} = 0 

 

𝑚1 + 𝑚2 = 2𝑇                                   (3) 
 

As region means cannot be equal, the simplification in (3) 

was obtained. The result is still an exhaustive search, the procedure 

will be called Optimum Exhaustive (OE) henceforth. It can be 

clearly noticed that the computational burden is less than that 

required by the OTSU method. 

An interesting observation of (1) is that the formulation can 

be modified to produce the least square error (LSE) between the 

original and the thresholded image. Hence, (3) and OTSU method 

can both be categorized as least square solutions. In other words, 

the objective function to minimize is actually 

 

𝑉𝑤 = ∫ (𝑡 − 𝑚1)2ℎ(𝑡)𝑑𝑡
𝑇

0

+ ∫ (𝑡 − 𝑚2)2ℎ(𝑡)𝑑𝑡
1

𝑇

         (4) 

 

The same result (with more elaborate mathematics) can be 

obtained using the between-class variance [2], 

 

𝑉𝑏 = 𝑤1𝑤2(𝑚2 − 𝑚1)2                                (5) 
 

In fact, same result (using a similar procedure) can be 

obtained by minimizing the cross correlation between the 

histograms of the original image and that of the thresholded image, 

i.e. using the formulation 

 

𝐹𝐶𝑟𝑜𝑠𝑠 =
𝑋1 + 𝑋2

𝑉𝑂𝑉𝑇

                             (6𝑎) 

𝑉𝑂 = √∫ {𝑥 − 𝑚}2ℎ(𝑥)𝑑𝑥
1

0

               (6𝑏) 

𝑉𝑇 = √∫ {𝑚1 − 𝑚}2ℎ(𝑥)𝑑𝑥
𝑇

0

+ ∫ {𝑚2 − 𝑚}2ℎ(𝑥)𝑑𝑥
1

𝑇

      (6𝑐) 

𝑋1 = ∫ {𝑥 − 𝑚}{𝑚1 − 𝑚}ℎ(𝑥)𝑑𝑥
𝑇

0

             (6𝑑) 

𝑋2 = ∫ {𝑥 − 𝑚}{𝑚2 − 𝑚}ℎ(𝑥)𝑑𝑥
1

𝑇

             (6𝑒) 

 

Interestingly, the complement feature formulation recently 

proposed [10] produces the same outcome as in (3). The 

complement feature is implemented in this work as the dot product 

between the original image and the thresholded image, i.e. 

 

𝐹𝐶𝑜𝑚𝑝 = ∫ {𝑥𝑚1 + (1 − 𝑥)(1 − 𝑚1)}ℎ(𝑥)𝑑𝑥
𝑇

0

+ ∫ {𝑥𝑚2 + (1 − 𝑥)(1 − 𝑚2)}ℎ(𝑥)𝑑𝑥
1

𝑇

       (7) 

 

Other features (e.g., entropy) can be treated in the same 

fashion as (1), however, the resultant description for the threshold 

is not as tractable as in (3). 

The proposed scheme can be extended to multilevel 

thresholding resulting in an extended formulation to that in (3). In 

fact, (2) can be extended to multi-level as 

 

𝐹𝑛 = ∑
{∫ 𝑡ℎ(𝑡)𝑑𝑡

𝑇𝑖

𝑇𝑖−1
}

2

∫ ℎ(𝑡)𝑑𝑡
𝑇𝑖

𝑇𝑖−1

𝑛

𝑖=1

                              (8) 

 

Following a similar derivation as above but more than one 

threshold, we obtain (please note that the number of means is more 

than the number of thresholds by one) 

 

2𝑇𝑗𝑚𝑗 − 𝑚𝑗
2 − 2𝑇𝑗𝑚𝑗+1 + 𝑚𝑗+1

2 = 0 

 

2𝑇𝑗 =
𝑚𝑗+1

2 − 𝑚𝑗
2

𝑚𝑗+1 − 𝑚𝑗

= 𝑚𝑗+1 + 𝑚𝑗                       (9) 

 

Unfortunately, the search is still an exhaustive one. 

 

II.2 NON-EXHAUSTIVE SOLUTIONS 

Despite the simple formulations obtained for two- and 

multi-level thresholding, as shown in (3) and (9) respectively, the 

solution can only be obtained through an exhaustive search. 

Page 12



 
 
 

 

Ameer, ITEGAM-JETIA, Manaus, v.7, n.31, p. 11-17, Sept/Oct, 2021. 

 

 

Resulting in a computational cost almost exponentially dependent 

on the number of levels. 

A closer look at (4) reveals the discontinuity of the error 

function implemented. Hence, continuous approximations to (4) 

will be investigated in this subsection. Polynomials are used to find 

a direct solution and further extend it to the multi-level case. 

The essential idea is to reformulate (4) as 

 

𝐹 = ∫ 𝑆(𝑡, 𝑚1, 𝑚2)ℎ(𝑡)𝑑𝑡
1

0

                            (10) 

Where 

 

𝑆(𝑡, 𝑚1, 𝑚2) ≈ {
(𝑡 − 𝑚1)2              𝑡 < 𝑇

(𝑡 − 𝑚2)2              𝑡 > 𝑇
}           (11) 

 

One of the possibilities for S is shown in Figure 1. An 

important requirement to overcome the need for an exhaustive 

search is to force S to be a continuous function. 

There are many ways to have a continuous representation 

for S. One suggestion would be to have a polynomial optimizing 

the objective function 

 

𝐹 = ∫ {∑ 𝑏𝑖(𝑡 − 𝑇)𝑖

𝑛

𝑖=0

− (𝑡 − 𝑚1)2}

2

𝑑𝑡
𝑇

0

             

+ ∫ {∑ 𝑏𝑖(𝑡 − 𝑇)𝑖

𝑛

𝑖=0

− (𝑡 − 𝑚2)2}

2

𝑑𝑡
1

𝑇

      (12) 

 

Where T is given by (3). Some simplifications can be used 

to ease the elaborate mathematics, however, a 7th order polynomial 

needs to be solved for n=4 (order of S). Unfortunately, the 

description in (12) cannot be easily modified to the multi-level 

case. 

 

 
Figure 1: (blue) A possible plot for the function S defined in (11) 

and (red) a 4th order approximation. 

Source: Author, (2021). 

 

An easier and powerful (as will be shown later) solution 

would be to concentrate on special features of S rather than the 

global approximation. The most attracting features of S are its zeros 

that are also its minima. The simplest form to describe this behavior 

is the quadratic product (QP) shown as 

 

𝑆2(𝑡, 𝑚1, 𝑚2) = (𝑡 − 𝑚1)2(𝑡 − 𝑚2)2                 (13) 
 

The description in (13) has deviation all over the range (t ϵ 

[0,1]), (see Figure 1). This sacrifice enables for a more regourous 

solution of (10) as 

 

𝐹𝑄𝑃 = ∫ (𝑡 − 𝑚1)2(𝑡 − 𝑚2)2ℎ(𝑡)𝑑𝑡
1

0

                  (14) 

 

Setting the derivatives in (14) w.r.t m1 and m2 to zero results 

in 

 

𝜕𝐹𝑄𝑃

𝜕𝑚1

= ∫ (𝑡 − 𝑚1)(𝑡 − 𝑚2)2ℎ(𝑡)𝑑𝑡
1

0

= 0           (15𝑎) 

 

𝜕𝐹𝑄𝑃

𝜕𝑚2

= ∫ (𝑡 − 𝑚1)2(𝑡 − 𝑚2)ℎ(𝑡)𝑑𝑡
1

0

= 0          (15𝑏) 

 

Subtracting (15a) from (15b) results in 

 

∫ (𝑡 − 𝑚1)(𝑡 − 𝑚2)(𝑚2 − 𝑚1)ℎ(𝑡)𝑑𝑡
1

0

= 0     (16) 

 

Substituting (16) back into (15a), we have 

 

∫ (𝑡 − 𝑚1)(𝑡 − 𝑚2)𝑡ℎ(𝑡)𝑑𝑡
1

0

= 0           (17𝑎) 

 

∫ (𝑡 − 𝑚1)(𝑡 − 𝑚2)ℎ(𝑡)𝑑𝑡
1

0

= 0           (17𝑏) 

 

Define 

𝑦𝑖 = ∫ 𝑡𝑖ℎ(𝑡)𝑑𝑡
1

0

                              (18) 

 

Using (18), we can rewrite (17) using polynomial notation as 

 

𝑦0𝑃0 + 𝑦1𝑃1 = −𝑦2                         (19𝑎) 

 

𝑦1𝑃0 + 𝑦2𝑃1 = −𝑦3                         (19𝑏) 
 

Where Pi are the coefficients of a second order polynomial 

obtained from (17). Explicitly, 

 

𝑃0 = 𝑚1𝑚2                                    (20𝑎) 
 

𝑃1 = −(𝑚1 + 𝑚2)                             (20𝑏) 

 

The 2x2 linear system of (19) can now be solved for Pi. The 

solutions (P1 and P2) can then  be used to find the two centers m1 

and m2 as the roots of the second order polynomial given by 

 

𝑃0 + 𝑃1𝑥 + 𝑥2 = 0                           (21) 
 

It should be clarified that Pi are used to find mi without the 

explicit use of (20). This trick enables the procedure to be break 

into two simple subsystems (a linear system followed by a root-

finding scheme) rather than solving a nonlinear set of equations. 

The threshold is then found as the average of the centres mi. 

Note the similarity with (3). 

A more intuitive look at Figure 1 suggests that the threshold 

is the maxima of the polynomial (minima are the centres mi). 

Hence, the derivative of (13) is 

 
𝜕

𝜕𝑡
{(𝑡 − 𝑚1)2(𝑡 − 𝑚2)2} = 0 
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(𝑡 − 𝑚1)22(𝑡 − 𝑚2) + 2(𝑡 − 𝑚1)(𝑡 − 𝑚2)2 = 0 
 

(𝑡 − 𝑚2)(𝑡 − 𝑚1){𝑡 − 𝑚1 + 𝑡 − 𝑚2} = 0        (22) 
 

The first two terms are simply the minima and are of no use 

as a threshold. Hence, the useful term is the last one. To reduce 

computation, (22) can be directly obtained from the derivative of 

(21) as 

 

2𝑥 + 𝑃1 = 0                                          (23) 

 

 

Table 1: Procedure flow of QP2. 

# Description 

1 Find Image Histogram 

2 Evaluate (18) 

3 Solve 2x2 system (19) 

4 Solve (23) to find threshold 

Source: Author, (2021). 

 

Interestingly, the solution obtained by (23) is the same as 

that given by (3). This clearly supports the optimum behaviour of 

the choice given in (13). Hence, the procedure relying on (14) will 

be called Quadratic Product for level 2 (QP2), see Table 1. The 

number 2 in QP2 is to indicate that the output is two-level (one 

threshold). 

 

II.3 VARIATIONS TO (12) 

A closer look at Figure 1 reveals the feature points of the 

function at 0, m1, T, m2, and 1. Satisfying the conditions (the 

function and/or the derivative) imposed by one or more of these 

feature points results in a higher order polynimial for S in (10). 

Unfortunately, the polynimial coefficients are also nonliear in 

terms of the unknowns m1 and m2. Despite the fact that finding the 

roots of a high order may be preferred over exhaustive search, the 

description does not lend itself to be generalized to multi-level 

thresholding. 

One of the interesting formulations was shown in (14). All 

other trials were too complex except ones that are just a 

multiplication of (13) by a constant in the form 

 

𝑆𝑐(𝑡, 𝑚1, 𝑚2) = 𝐶(𝑇, 𝑅)(𝑡 − 𝑚1)2(𝑡 − 𝑚2)2               (24𝑎) 
 

2𝑇 = 𝑚2 + 𝑚1                                 (24𝑏) 

 

2𝑅 = 𝑚2 − 𝑚1                                 (24𝑐) 
 

Many forms similar to (24a) can be designed to produce 

various schemes with different level of complexty. One such 

scheme is 

 

𝐹𝑅𝑎𝑡𝑖𝑜 = ∫ (
𝑡

𝑚1

− 1)
2

(
𝑡

𝑚2

− 1)
2

ℎ(𝑡)𝑑𝑡
1

0

                  (25) 

 

Leading to the solution (in a similar fashion to DS2) 

 

[
𝑦1 𝑦2

𝑦2 𝑦3
] [

𝑃0

𝑃1
] = − [

𝑦3

𝑦4
]                            (26) 

 

It was noted that (26) can give slightly better results as 

compared to QP2. However, due to the denominators, the previous 

statement is valid either to the image or its negative (1 – image) but 

not both. Leading to a significant drawback for the multi-level case. 

Many formulations of (24) have been investigated and 

found to produce solutions requiring the root finding of 

polynomials (in T) of order >6. 

The function given in (13) can be further modified using just 

a multiplication constant. The simplest approaches were to exactly 

satisfy (11) at either t=0, T, 1, 1+T, or 1–T. Unfortunately, these 

suggestions were either mathematically involved or produce 

inferior performance (inefficient for some images). Another 

drawback is the inability of these schemes to generalize to the 

multi-level case. 

The function S, given in (10), can be described using a 

polynomial of high order (>4) to better satisfy (11). Unfortunately, 

the resultant mathematics was found to be more involved for many 

suggestions including the ones described in the previous paragraph. 

 

II.4 MULTI-LEVEL THRESHOLS 

Another advantage of the suggestion in (13) is that it can be 

easily extended to multi-level thresholding through 

 

𝑆𝑛(𝑡, 𝑚1, 𝑚2) = ∏(𝑡 − 𝑚𝑖)
2

𝑛

𝑖=1

                  (27) 

 

Following a similar procedure to that obtained through (14) 

to (18), we obtain the following linear system 

 

[

𝑦0 ⋯ 𝑦𝑛−1

⋮ ⋱ ⋮
𝑦𝑛−1 ⋯ 𝑦2𝑛−2

] [
𝑃0

⋮
𝑃𝑛−1

] = − [

𝑦𝑛

⋮
𝑦2𝑛−1

]           (28) 

 

Once Pi are obtained (note the extenstion from (20)), we can 

find mi by finding the roots of 

 

∑ 𝑃𝑖𝑥
𝑖

𝑛−1

𝑖=0

+ 𝑥𝑛 = 0                            (29) 

 

Each threshold is then found by averaging the two adjacent 

centres in a similar fashion to (9). The same procedure leading to 

(22) can be extended to simplify the scheme of finding the 

thresholds as follows, 

 

𝜕

𝜕𝑥
∏(𝑥 − 𝑚𝑖)

2

𝑛

𝑖=1

= 0 

 

∑ ∏
2(𝑥 − 𝑚𝑖)

2

(𝑥 − 𝑚𝑗)

𝑛

𝑖=1

𝑛

𝑗=1

= 0                            (30) 

 

Excluding the minima as the thresholds are the maxima (see 

Figure 1), we have 

 

∑ ∏(𝑥 − 𝑚𝑖)

𝑛

𝑖=1
𝑖≠𝑗

𝑛

𝑗=1

= 0                             (31) 

 

Equivalently, (31) can be written as 
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𝜕

𝜕𝑥
∏(𝑥 − 𝑚𝑖)

𝑛

𝑖=1

=
𝜕

𝜕𝑥
{∑ 𝑃𝑖𝑥𝑖

𝑛−1

𝑖=0

+ 𝑥𝑛} = 0 

 

𝑛𝑥𝑛−1 + ∑ 𝑖𝑃𝑖𝑥𝑖−1

𝑛−1

𝑖=1

= 0                         (32) 

 

Obviously, the order of the polynomial in (32) is less by one 

compared to that in (29). In addition, it avoids the avaraging 

procedure required to find the thresholds from the obtained means 

mi. The procedure will be called Quadratic Product for level n 

(QPn) as descibed in Table 2. Please note that QPn has n–1 

thresholds. 

 

Table 2: Procedure flow of QPn. 

# Description 

1 Find Image Histogram 

2 Evaluate (18) 

3 Solve linear system (28) 

4 Solve (32) to find thresholds 

Source: Author, (2021). 

 

II.5 EXTENSION TO CLUSTERING 

Fortunately, a direct solution to the two-level case (for any 

number of dimensions) can be formulated as will be given shortly. 

Raw data will be used (without histogram) to ease the notation. 

Consider the optimization problem 

 

𝐹𝐷𝑖𝑚 = ∑((𝑥𝑖 − 𝑚1)𝑇(𝑥𝑖 − 𝑚2))
2

𝑖

 

𝐹𝐷𝑖𝑚 = ∑ ∑(𝑥𝑖𝑘𝑥𝑖𝑘 − 𝑥𝑖𝑘𝑚1𝑘 − 𝑥𝑖𝑘𝑚2𝑘 + 𝑚1𝑘𝑚2𝑘)2

2

𝑘=1𝑖

  (33) 

 

Let’s define 

 

𝑎𝑗𝑘 = ∑ 𝑥𝑖𝑘
𝑗

𝑖

                                 (34𝑎) 

 

𝑏𝑘 = 𝑎0𝑘𝑎2𝑘 − 𝑎1𝑘𝑎1𝑘                         (34𝑏) 

 

𝑐𝑘 = 𝑎0𝑘𝑎3𝑘 − 𝑎1𝑘𝑎2𝑘                         (34𝑐) 

 

𝑑𝑘 = 𝑎1𝑘𝑎3𝑘 − 𝑎2𝑘𝑎2𝑘                         (34𝑑) 

 

Setting derivatives of F (33) to zero and performing a few 

simplifications, we obtain 

 

𝑏𝑘𝑚2𝑘 = 𝑐𝑘 − 𝑏𝑘𝑚1𝑘                             (35) 

 

𝑚1𝑘 =
𝑐𝑘 ± √𝑐𝑘

2 − 4𝑏𝑘𝑑𝑘

2𝑏𝑘

                        (36) 

 

Please note that each of the equations (34) – (36) are 

actually a set written compactly together. In other words, for a 3D 

data, (36) is in fact a set of three equations. 

The scheme (QPn) can be extended to levels more than two 

and higher dimensions (clustering), however, the resultant 

mathematics is too much envolved. Enforcing independency (sub-

optimal) between the dimensions can reduce the complexity on the 

expense of ambiguity in the final results. The ambiguity manefists 

itself in the fact that n centers should be picked out of the produced 

nk centers (k is the number of dimensions). 

 

III. RESULTS AND DISCUSSIONS 

 
Figure 2: (First row) test images (1 – 3), (second row) their ground truth. 

Source: Author, (2021). 
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Figure 3: (First row) test images (4 – 5) and (second row) their 

ground truth. 

Source: Author, (2021). 

 

Five test images with their ground truth are shown in Figure 

2-3. For comparison purposes, the outputs of OTSU, OE (3), and 

QP2 (see Table 1) are shown in Figure 4-5. 

OE is clearly similar to OTSU. The thresholds are very 

close, however; for some images, OE produces more than one 

threshold, an observation that may wort further investigation. 

Although the performance of QP2 is inferior to both OTSU 

and OE (more images are needed to obtain useful statistics for 

performance comparisons), the non-exhaustive behaviour is 

appealing. In addition, results for number of levels more than 2 is 

encouraging. Figure 6-7 shows the performance of QP3, and QP4 

using the same set of images. 

 

 
Figure 4: results of OTSU (First row), OE (second row), and 

QP2 (third row) for the test images (1 – 3). 

Source: Author, (2021). 

 

 

 

 
Figure 5: results of OTSU (First row), OE (second row), and 

QP2 (third row) for the test images (4 – 5). 

Source: Author, (2021). 

 

 
Figure 6: results of QP3 (First row) and QP4 (second row) for 

the test images (1 – 3). 

Source: Author, (2021). 

 

 
Figure 7: results of QP3 (First row) and QP4 (second row) for 

the test images (4 – 5). 

Source: Author, (2021). 
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It was noticed that smoothing the histogram (through 

averaging and/or fitting) did not produce significant differences. 

More images where thresholded using QP3 to further 

explore the performance as shown in Figure 8-9. 

 

 
Figure 8: (First row) test images (6 – 8) and (second row) their 

QP3 output. 

Source: Author, (2021). 

 

 
Figure 9: (First row) test images (9 – 11) and (second row) their 

QP3 output. 

Source: Author, (2021). 

 

IV. CONCLUSIONS 

A new optimized solution is suggested for the binary image 

thresholding problem using least square error. The formulation is 

equivalent to the commonly used OTSU method and the cross-

correlation description. Although performance does not deviate too 

much from that of OTSU, a computational gain is obtained. 

Inspired by the mentioned optimized solution, a non-

exhaustive scheme was then developed using a polynomial 

approximation to the least square error function. A quadratic 

product was suggested as a general extension. 

The quadratic product QP2 has shown encouraging results. 

In addition to its simplicity, the formulation can be easily extended 

to the multi-level thresholding case QPn. 

Some variations (still non-exhaustive) have been tried 

without significant improvements in performance but are 

computationally demanding. Further insight into higher order 

polynomials may be needed to investigate a possible compromise 

between performance and complexity. 

More weighting schemes, using (24), are currently under 

investigation to improve performance while keeping the 

mathematics tractable. 

A more elaborate comparison is being conducted to further 

explore the extent of the proposed schemes in terms of output 

quality and computational cost. 
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