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This paper develops a health classification system for pumps to enhance operational 

efficiency and reduce unplanned downtime, crucial for manufacturing and water treatment 

industries. Leveraging real-time data from temperature sensors and industrial 

accelerometer, the system captures vital pump health indicators. Data is collected via Data 

Acquisition (DAQ) modules and by using Deep Learning (DL) techniques such as Long 

Short-Term Memory (LSTM) networks and Transformers; the pump health classification 

is achieved. These DL models excel at understanding complex temporal and spatial 

patterns in sensor data, essential for accurate fault detection. Through a comparative 

analysis of LSTM and Transformer models, their efficacy in pump health classification is 

assessed. This approach emphasizes the importance of sophisticated data analysis and deep 

learning in industrial maintenance practices. By providing fault detection, the system aims 

to significantly reduce maintenance costs, optimize resource usage, and enhance the safety 

and reliability of industrial operations. 
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I. INTRODUCTION 

In the realm of industrial machinery and manufacturing, 

ensuring the seamless operation of critical components is of 

paramount significance. Industrial pumps, the workhorses in 

numerous sectors, including energy production, water treatment, 

and manufacturing processes, are indispensable for the continuous 

flow of materials. However, these mechanical workhorses are 

susceptible to wear, tear, and potential malfunctions. The 

application of data analytics has emerged as a transformative 

force in the sphere of predictive maintenance, offering the 

capacity to proactively assess and maintain the health of these 

pumps in real-time. 

Pump failure detection is a critical task in many industrial 

applications, as it can help to prevent costly downtime and 

catastrophic failures. In recent years, deep learning methods have 

been shown to be effective in pump failure detection, achieving 

state-of-the-art results. Deep learning methods, particularly Long 

Short-Term Memory (LSTM) and Transformer models, have 

excelled in this task. LSTM is suitable for sequential data like 

sensor readings obtained from the pumps, but have limitations in 

capturing long-range dependencies. In contrast, Transformers, a 

newer neural network type, can process data in parallel, 

enhancing efficiency and the ability to model long dependencies. 

This study encompasses the real-time data collected on-

site, thereby presenting a comprehensive approach to formulating 

a dependable and efficient health classification system, for these 

indispensable components of industrial operations. 

II. RELATED WORKS 

The need for advanced fault detection and predictive 

maintenance in industrial systems has led to significant research 

into sensor technologies, Machine Learning (ML) and Deep 

Learning (DL). Pioneered this effort by utilizing smart sensors for 

monitoring centrifugal pumps, demonstrating the potential of real-

time data in early fault detection [1]. This study set a precedent 

for integrating diverse sensor data with analytical models to 
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enhance predictive maintenance strategies. Expanding on this 

foundation, the utility of vibration and motor current signature 

analysis (MCSA) in detecting faults in centrifugal pumps were 

carried out [2]. This work highlighted the complexity of 

interpreting the signals associated with mechanical failures, 

advocating for more nuanced diagnostic tools. A novel approach 

of using infrared thermography for predictive maintenance was 

introduced offering a non-invasive technique to monitor 

temperature variations indicative of underlying conditions, 

thereby broadening the spectrum of fault detection methods [3]. 

In the realm of ML, demonstrated the effectiveness of MLP and 

SVM algorithms in fault prediction within the oil and gas industry 

[4]. This study emphasized the critical role of algorithm selection 

in developing predictive models tailored to specific industrial 

contexts and data characteristics. A data-driven approach to 

predict pump failures, leveraging correlation analysis and 

empirical data was developed [5]. This methodology underscored 

the importance of integrating expert insights with analytical 

models to improve predictive accuracy. 

The advancement of DL in fault diagnosis was 

significantly marked by Gamboa and utilized LSTM networks for 

time-series analysis. This approach addressed the challenges of 

analyzing temporal data, providing a robust framework for 

anomaly detection and forecasting [6]. Sabir et al. further 

validated the effectiveness of LSTM networks in diagnosing 

bearing faults in electrical machines, showcasing these models' 

capability to capture complex, time-dependent patterns 

characteristic of mechanical faults [7]. Diffusion-convolutional 

neural network (DCNN) was used for diagnosing pump faults 

from vibration data and high diagnostic accuracy was achieved in 

[8]. This work illustrated the potential of combining spatial 

analysis with traditional diagnostic data. The transformative 

potential of the Transformer model for fault diagnosis was 

introduced in [9]. The Anomaly Transformer model 

demonstrating the applicability of advanced DL models in 

industrial systems for fault identification was developed [10]. 

Further research by [11] and [12] expanded the application 

of ML and DL in industrial pump anomaly detection and bearing 

fault diagnosis, respectively. These studies highlighted the 

enhanced detection accuracy and efficiency afforded by advanced 

models. A comprehensive review of ML approaches for 

diagnosing faults in rotating equipment, emphasizing the superior 

performance of DL networks over traditional algorithms was 

carried out [13]. 

Sunal et al. reviewed ML-based fault detection for 

centrifugal pump induction motors, illustrating the ongoing 

advancements in the field and the importance of data quality and 

model selection [14]. The integration of CNNs with LSTMs 

marked a significant advancement in fault diagnosis, combining 

spatial and temporal data analysis for accurate fault identification 

[15],[16]. A transformer-based approach for novel fault detection 

was introduced showcasing the real-world applicability of 

advanced DL techniques in manufacturing and the effectiveness 

of these models in diverse applications [17]. Studies on 

centrifugal pump impeller crack detection, DL applications in 

rotating machinery fault diagnosis, and DL-based fault diagnosis 

of main pumps in converter stations were carried out [18-20]. 

The use of time series transformers for fault diagnosis in 

rotating machinery, demonstrating these models' ability to directly 

process time-series data and enhance fault identification accuracy 

was achieved [21],[22]. Reference [23] focused on fault 

classification of three-phase induction motors using Bi-LSTM 

networks, underscoring the potential of DL models in developing 

accurate and efficient fault classification systems. Markov 

parameters for fault detection in centrifugal pumps, presenting an 

innovative approach to fault diagnosis based on vibration data 

analysis was utilized in [24]. Applied a Transformer Neural 

Network for AC series arc-fault detection, illustrating the specific 

applications of DL models in addressing critical fault detection 

challenges in electrical systems [25]. 

Collectively, these studies form a comprehensive 

foundation for the development of advanced fault detection and 

predictive maintenance systems in industrial contexts. From the 

initial integration of sensor data with analytical models [1] to the 

application of advanced DL techniques for real-time fault 

identification [10],[17],[25], this field of research significantly 

advances the capabilities for fault detection, thereby enhancing 

operational efficiency, reducing maintenance costs, and 

improving safety across various industrial domains.  

This paper is organized as follows: Section 3 gives 

description on the hardware setup. Proposed methodology is 

presented in Section 4. The performance of LSTM and 

Transformer models in classifying the health status of pump are 

discussed in Section 5. Finally, conclusions are drawn in Section 

6. 

III. HARDWARE DESCRIPTION 

Figure 1 depicts the hardware setup developed for this 

work. The setup contains four similar centrifugal pumps. The 

leftmost pump is the healthy pump and the other three pumps are 

faulty. The second pump from the left has a bearing fault, and the 

third pump from the left has an impeller fault. The rightmost 

pump has both bearing and impeller faults. These faults are 

purposefully induced for destructive testing. Temperature and 

vibration sensors are mounted on these pumps to collect 

temperature and vibration data for fault detection. In this work, 

the leftmost pump (healthy) and rightmost pump (faulty) are 

considered for health classification problem using deep learning 

techniques. 

 
Figure 1: Hardware setup. 

Source: Authors, (2025). 

 

The closer view of one of the pumps with sensors mounted 

is shown in Figure 2. An industrial accelerometer is mounted on 

top of the pump’s casing, while a J-type thermocouple is placed 

inside the pump's body and sealed in such a way that the 

thermocouple lead touches the bearings. The outputs of these 

sensors are connected to the respective signal conditioning 

modules, which are then acquired and stored in a computer 

running data logging software. The logged data is analysed 

subsequently. This strategic assembly of sensors and modules 

collectively captures a detailed picture of the pumps operational 
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health, enabling a targeted and effective maintenance regime that 

bolsters industrial efficiency and reliability. 

 

 
Figure 2: Closer view of a pump with sensors. 

Source: Authors, (2025). 

IV. PROPOSED METHODOLOGY 

This section deals with the step-by-step implementation 

of the proposed method. It also briefly explains the DL algorithm 

implementation.  

 

IV.1 FLOW DIAGRAM 

Figure 3: Work flow diagram. 

Source: Authors, (2025). 

Figure 3 shows the flow diagram that illustrates a process 

flow for a pump health monitoring system using deep learning 

models. The system differentiates between healthy and faulty 

pumps by analyzing the data collected from temperature and 

vibration sensors connected to the pumps. The process begins 

with signal conditioning, where the raw sensor data is filtered and 

transformed to a usable format using the DAQ modules. This is 

followed by data logging, where the conditioned sensor signals 

are stored and then data preprocessing is performed. 

The preprocessed data is then divided into two sets: one for 

training the models and another for testing their performance. 

Two types of deep learning models are used: Long Short-Term 

Memory models and Transformer models. These models are 

trained separately with the training data set. After training, the 

models are evaluated using the test data to determine their 

accuracy and effectiveness in fault classification. Finally, the 

trained models are used to classify the health status of pumps in 

real-time or within a monitoring period, determining whether they 

are operating correctly (healthy) or have anomalies that suggest 

faults (faulty). The outcome of this process informs maintenance 

decisions, potentially leading to proactive interventions that can 

prevent breakdowns and maintain operational efficiency. 

 

IV.2 ALGORITHM IMPLEMENTATION 

Deep learning models like Long Short-Term Memory and 

Transformer have gained widespread popularity and proven to be 

highly effective for time series problems, surpassing traditional 

models for several key reasons. 

IV.2.1 LONG SHORT-TERM MEMORY MODEL 

Long Short-Term Memory is a type of recurrent neural 

network (RNN) architecture that has revolutionized the field of 

deep learning, particularly in the domain of sequential data 

processing. LSTMs address the vanishing gradient problem, 

which often hindered the training of traditional RNNs, by 

introducing a sophisticated memory mechanism that enables them 

to capture and remember long-range dependencies in sequences. 

LSTMs achieve their ability to learn long-term dependencies by 

using a combination of forget, input, and output gates that control 

the flow of information within the network. The forget gate 

determines what information from the previous state to forget, the 

input gate controls what new information to add, and the output 

gate controls what information to output. This allows LSTMs to 

selectively update, store, or discard information as they process 

data over time [15],[23]. 

The LSTM model design steps are as follows: 

Step 1: Determine the number of LSTM layers: The number of 

LSTM layers depends on the complexity of the task and the size 

of the dataset. For small datasets, it is typically best to start with 

one or two LSTM layers. For larger datasets, or for more complex 

tasks, it may be necessary to use three or more LSTM layers. 

Step 2: Determine the number of units in each LSTM layer: 
The number of units in each LSTM layer represents the 

complexity of the model. For small datasets, it is typically best to 

start with a small number of units. For larger datasets, or for more 

complex tasks, it may be necessary to use a larger number of 

units. 

Step 3: Determine the activation function for the LSTM 

layers: The activation function for the LSTM layers controls the 

information flow through the network. The most common 

activation function for LSTM layers is the hyperbolic tangent 

(tanh) function. However, other activation functions, such as the 

sigmoid and rectified linear unit (ReLU) function, can also be 

used. 

Step 4: Determine the optimizer for the LSTM model: The 

optimizer controls the parameters of the LSTM model which are 

updated during training. Some popular optimizers for LSTM 

models include Adam and RMSprop. 

Step 5: Determine the loss function for the LSTM model: The 

loss function measures how well the LSTM model is performing 
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on the training data. Some common loss functions for LSTM 

classification tasks include cross-entropy and binary cross-

entropy. 

Step 6: Determine the batch size for the LSTM model: The 

batch size controls how many samples are processed by the 

LSTM model at each training step. A larger batch size can 

improve the efficiency of training, but it can also lead to 

overfitting. A smaller batch size can help to prevent overfitting, 

but it can also make training slower. 

Step 7: Determine the number of epochs for the LSTM model: 
The number of epochs controls how many times the LSTM model 

is trained over the entire training dataset. A larger number of 

epochs can improve the performance of the model, but it can also 

lead to overfitting. A smaller number of epochs can help to 

prevent overfitting, but it may not allow the model to learn the 

training data fully. 

IV.2.2 TRANSFORMER MODEL 

The Transformer model represents a significant 

breakthrough in deep learning. Its fundamental innovation lies in 

the attention mechanism, enabling the simultaneous capture of 

long-range dependencies in input sequences through self-attention 

layers, resulting in more efficient computation, faster training, and 

improved accuracy. Furthermore, transformers have found utility 

in time series analysis, as demonstrated by models like Informer. 

Informer leverages self-attention to capture long-range temporal 

dependencies and incorporates positional encoding to discern the 

temporal order within time series data. This adaptability 

showcases the far-reaching impact of Transformer-based models 

in diverse fields, including time series forecasting [12],[25]. 

The transformer model design steps are as follows: 

Step 1: Determine the number of encoder layers: The number 

of encoder layers depends on the complexity of the task and the 

size of the dataset.  

Step 2: Determine the number of attention heads: The number 

of attention heads also depends on the complexity of the task and 

the size of the dataset.  

Step 3: Determine the embedding dimension: The embedding 

dimension should be chosen to be large enough to capture the 

complexity of the input and output data. 

 

IV.2.3 DESIGN PARAMETERS 

Two deep learning models, LSTM and Transformer, 

were developed to classify the health status of industrial pumps 

based on separate temperature and vibration datasets. Table 1 and 

Table 2 represent the design parameters of the LSTM model and 

transformer model respectively. 

The LSTM model is constructed with one layer 

containing 50 units, employing a sigmoid activation function, 

with Adam optimizer, and binary cross entropy as the loss 

function. It is trained over 5 epochs with a batch size of 128, 

processing 100,000 vibration data points and 23,701 temperature 

data points for both healthy and faulty pump conditions. The 

transformer model, designed for capturing complex dependencies, 

includes 2 encoder layers with 2 attention heads, and an 

embedding dimension of 128. It follows the same training 

regimen of 5 epochs and uses an identical dataset structure as the 

LSTM model. These design parameters enable the models to learn 

from the temporal and spatial patterns inherent in the sensor data, 

aiming to provide accurate fault classification to enhance 

industrial maintenance practices. 

Table 1: Design parameters for LSTM model.  

Design Parameters Values/Function 

No. of LSTM layers 1 

No. of units in each layer 50 

Activation function Sigmoid 

Optimizer Adam 

Loss function Binary Cross Entropy 

Batch Size 128 

No. of epochs 5 

Vibration data points 100000 (for each Healthy and 

Faulty Pump) 

Temperature data points 23701 (for each Healthy and 

Faulty Pump) 

Source: Authors, (2025). 

Table 2: Design parameters for transformer model. 

Design Parameters Values/Function 

No. of encoder layers 2 

No. of  attention heads 2 

Embedding dimension (Head 

size) 
128 

No. of epochs 5 

Vibration data points 

100000 

(for each Healthy and Faulty 

Pump) 

Temperature data points 

23701 

(for each Healthy and Faulty 

Pump) 

Source: Authors, (2025). 

V. RESULTS AND DISCUSSIONS 

V.1 LSTM MODEL FOR VIBRATION DATASET 

The vibration data obtained from industrial accelerometer 

is used for training the model. Figure 4 represents the accuracy of 

the LSTM model for vibration data. It is inferred from Figure 4 

that the initial high peak indicates that the model is learning well 

from the training data and performs effectively on both the 

training and validation datasets. The downturn in both training 

and validation accuracy implies a common issue affecting 

generalization which could be due to overfitting or a sudden 

change in the data distribution. The subsequent steady increase in 

accuracy for both datasets suggests that the model is recovering 

and adapting to the challenges presented during the downturn. As 

the number of epochs increases, the accuracy also increases. 

A confusion matrix in binary classification provides a 

detailed breakdown of the model's performance by categorizing 

the predictions into four categories: True Positives (TP), True 

Negatives (TN), False Positives (FP) and False Negatives (FN).  

Figure 5 represents the confusion matrix of the LSTM 

model for the predictions made upon the test data. The TP and FP 

are 18,537 and 19,959 respectively. The TN and FN are 1,484 and 

0 respectively. These values are used to find several other 

performance indicators of the model, such as Precision, Recall, 

and F1 Score. 
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Figure 4: Accuracy of LSTM for vibration dataset. 

Source: Authors, (2025). 

 

 
Figure 5:  Confusion matrix of LSTM for vibration dataset. 

Source: Authors, (2025). 

 
Table 3 shows the classification report of the LSTM model 

indicating the key performance indicators. It also provides a 

comprehensive summary of various performance metrics such as 

precision, recall and F1-score for each class in a classification 

problem. 

Table 3: Classification report of LSTM for vibration dataset. 

Class Precision Recall F1-score Support 

Faulty 1.00 0.93 0.96 20021 

Healthy 0.93 1.00 0.96 19959 

Accuracy 0.96 39980 

Macro average 0.97 0.96 0.96 39980 

Weighted average 0.97 0.96 0.96 39980 

Source: Authors, (2025). 

 

V.2 LSTM MODEL FOR TEMPERATURE DATASET  

Figure 6 represents the accuracy of the LSTM model for 

temperature data. Figure 7 represents the confusion matrix of the 

predictions made upon the test data. 

 
Figure 6: Accuracy of LSTM for temperature dataset. 

Source: Authors, (2025). 

 

 
Figure 7: Confusion matrix of LSTM for temperature dataset. 

Source: Authors, (2025). 

 

Table 4 shows the classification report of the LSTM model 

indicating the key performance indicators. It is observed that the 

model made a good number of correct predictions of the pump 

status on the test data with an accuracy of 94%. 

Table 4: Classification report of LSTM for temperature dataset.  

Class Precision Recall F1-score Support 

Faulty 0.89 1.00 0.94 4699 

Healthy 1.00 0.88 0.93 4742 

Accuracy 0.94 9441 

Macro average 0.94 0.94 0.94 9441 

Weighted average 0.94 0.94 0.94 9441 

Source: Authors, (2025). 

V.3 TRANSFORMER MODEL FOR VIBRATION 

DATASET 

Figure 8 represents the accuracy of the transformer model 

for vibration data. It shows a higher level of accuracy in 

classifying the status of the pump. Figure 9 represents the 

confusion matrix of the predictions made upon the test data. 
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Figure 8: Accuracy of transformer model for vibration dataset. 

Source: Authors, (2025). 

 

 
Figure 9: Confusion matrix of transformer model for vibration 

dataset. 

Source: Authors, (2025). 

 

Table 5 shows classification report of transformer model 

indicating key performance indicators. It is inferred that 

transformer model for vibration dataset achieved an extremely 

high accuracy of around 100% in classifying the pump health 

status. 

 

Table 5: Classification report of transformer model for vibration 

dataset. 

Class Precision Recall F1-score Support 

Faulty 1.00 1.00 1.00 20021 

Healthy 1.00 1.00 1.00 19959 

Accuracy 1.00 39980 

Macro average 1.00 1.00 1.00 39980 

Weighted average 1.00 1.00 1.00 39980 

Source: Authors, (2025). 

 

V.4 TRANSFORMER MODEL FOR TEMPERATURE 

DATASET 

Figure 10 represents the accuracy of transformer model on 

temperature data. It shows that greater accuracy is achieved in 

classifying the status of the pump compared to LSTM model. 

Figure 11 represents confusion matrix of the predictions made 

upon the test data. 

 
Figure 10: Accuracy of transformer model for temperature 

dataset. 

Source: Authors, (2025). 

 

 
Figure 11: Confusion matrix of transformer model for 

temperature dataset. 

Source: Authors, (2025). 

Table 6 shows the classification report of the transformer 

model indicating the key performance indicators. The transformer 

model for temperature dataset achieved a very good accuracy of 

99% in classifying the pump health status. 

Table 6: Classification report of transformer model for 

temperature dataset. 

Class Precision Recall F1-score Support 

Faulty 0.99 0.99 0.99 4699 

Healthy 0.99 0.99 0.99 4742 

Accuracy 0.99 9441 

Macro average 0.99 0.99 0.99 9441 

Weighted average 0.99 0.99 0.99 9441 

Source: Authors, (2025). 

 

V.5 COMPARATIVE ANALYSIS OF LSTM AND 

TRANSFORMER MODELS 

It is inferred that from Table 7 and Table 8, the 

classification accuracy obtained with the Transformer model is 

comparatively better than LSTM model. Hence, the Transformer 
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model outperforms the LSTM model for pump health 

classification. 

 
Table 7: Comparison of LSTM and Transformer model for 

vibration dataset. 

Performance 

Metrics 

LSTM Transformer 

Accuracy 0.9629 0.9996 

Precision 0.9308 0.9992 

Recall 0.9995 1.0000 

F1-score 0.9642 0.9996 

Source: Authors, (2025). 

Table 8: Comparison of LSTM and Transformer model for 

temperature dataset. 

Performance 

Metrics 
LSTM Transformer 

Accuracy 0.9374 0.9867 

Precision 0.9983 0.9896 

Recall 0.8768 0.9858 

F1-score 0.9336 0.9867 

Source: Authors, (2025). 

V. CONCLUSIONS 

The comparative performance analysis of the LSTM and 

Transformer models for pump health classification using 

vibration and temperature datasets reveals a distinct advantage in 

favor of the Transformer model. These findings underscore the 

effectiveness of the Transformer architecture in handling 

sequential data, benefitting from its attention mechanisms that 

capture long-range dependencies more effectively than LSTM's 

gated recurrent units. Consequently, the Transformer model 

proves to be a robust and highly accurate tool for predictive 

maintenance in industries, offering significant potential to reduce 

downtime and maintenance costs through timely and precise fault 

detection. 

In conclusion, the empirical evidence from this study 

strongly supports the Transformer-based models over LSTMs for 

monitoring the health of industrial pumps using sensor data. The 

higher accuracy and precision of the Transformer model can 

enable more reliable and effective predictive maintenance 

strategies, contributing to the advancement of smart monitoring 

practices. 
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